In this paper we consider the long-time asymptotics of a linear version of the Smoluchowski equation which describes the evolution of a tagged particle moving in a random distribution of fixed particles. The volumes v of these particles are independently distributed according to a probability distribution which decays asymptotically as a power law v^{−σ}. The validity of the equation has been rigorously proved in [22] taking as a starting point a particle model and for values of the exponent σ > 3, but the model can be expected to be valid, on heuristic grounds, for σ > 5/3. The resulting equation is a non-local linear degenerate parabolic equation. The solutions of this equation display a rich structure of different asymptotic behaviors according to the different values of the exponent σ. Here we show that for 5/3< σ < 2 the linear Smoluchowski equation is well-posed and that there exists a unique self-similar profile which is asymptotically stable.

Self-similar asymptotic behavior for the solutions of a linear coagulation equation

Nota A.
;
2019-01-01

Abstract

In this paper we consider the long-time asymptotics of a linear version of the Smoluchowski equation which describes the evolution of a tagged particle moving in a random distribution of fixed particles. The volumes v of these particles are independently distributed according to a probability distribution which decays asymptotically as a power law v^{−σ}. The validity of the equation has been rigorously proved in [22] taking as a starting point a particle model and for values of the exponent σ > 3, but the model can be expected to be valid, on heuristic grounds, for σ > 5/3. The resulting equation is a non-local linear degenerate parabolic equation. The solutions of this equation display a rich structure of different asymptotic behaviors according to the different values of the exponent σ. Here we show that for 5/3< σ < 2 the linear Smoluchowski equation is well-posed and that there exists a unique self-similar profile which is asymptotically stable.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/151267
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact