We review combinatorial properties of solitons of the Box-Ball system introduced by Takahashi and Satsuma (J Phys Soc Jpn 59(10):3514–3519, 1990). Starting with several definitions of the system, we describe ways to identify solitons and review a proof of the conservation of the solitons under the dynamics. Ferrari et al. (Soliton decomposition of the box-ball system (2018). arXiv:1806.02798) proposed a soliton decomposition of a configuration into a family of vectors, one for each soliton size. Based on this decompositions, the authors (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020) propose a family of measures on the set of excursions which induces invariant distributions for the Box-Ball System. In the present paper, we propose a new soliton decomposition which is equivalent to a branch decomposition of the tree associated to the excursion, see Le Gall (Une approche élémentaire des théorèmes de décomposition de Williams. In: Séminaire de Probabilités, XX, 1984/85, vol. 1204, pp. 447–464. Lecture Notes in Mathematics. Springer, Berlin (1986)). A ball configuration distributed as independent Bernoulli variables of parameter λ < 1/2 is in correspondence with a simple random walk with negative drift 2λ−1 and having infinitely many excursions over the local minima. In this case the soliton decomposition of the walk consists on independent double-infinite vectors of iid geometric random variables (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020). We show that this property is shared by the branch decomposition of the excursion trees of the random walk and discuss a corresponding construction of a Geometric branching process with independent but not identically distributed Geometric random variables.

Box-Ball System: Soliton and Tree Decomposition of Excursions

D. Gabrielli
2020-01-01

Abstract

We review combinatorial properties of solitons of the Box-Ball system introduced by Takahashi and Satsuma (J Phys Soc Jpn 59(10):3514–3519, 1990). Starting with several definitions of the system, we describe ways to identify solitons and review a proof of the conservation of the solitons under the dynamics. Ferrari et al. (Soliton decomposition of the box-ball system (2018). arXiv:1806.02798) proposed a soliton decomposition of a configuration into a family of vectors, one for each soliton size. Based on this decompositions, the authors (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020) propose a family of measures on the set of excursions which induces invariant distributions for the Box-Ball System. In the present paper, we propose a new soliton decomposition which is equivalent to a branch decomposition of the tree associated to the excursion, see Le Gall (Une approche élémentaire des théorèmes de décomposition de Williams. In: Séminaire de Probabilités, XX, 1984/85, vol. 1204, pp. 447–464. Lecture Notes in Mathematics. Springer, Berlin (1986)). A ball configuration distributed as independent Bernoulli variables of parameter λ < 1/2 is in correspondence with a simple random walk with negative drift 2λ−1 and having infinitely many excursions over the local minima. In this case the soliton decomposition of the walk consists on independent double-infinite vectors of iid geometric random variables (Ferrari and Gabrielli, Electron. J. Probab. 25, Paper No. 78–1, 2020). We show that this property is shared by the branch decomposition of the excursion trees of the random walk and discuss a corresponding construction of a Geometric branching process with independent but not identically distributed Geometric random variables.
File in questo prodotto:
File Dimensione Formato  
ferrari-gabrielli-2020.pdf

solo utenti autorizzati

Descrizione: file pubblicato
Tipologia: Documento in Versione Editoriale
Licenza: Dominio pubblico
Dimensione 824.12 kB
Formato Adobe PDF
824.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/152092
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact