By means of theory and experiments, the application capability of nickel ditelluride (NiTe2) transition-metal dichalcogenide in catalysis and nanoelectronics is assessed. The Te surface termination forms a TeO2 skin in an oxygen environment. In ambient atmosphere, passivation is achieved in less than 30 min with the TeO2 skin having a thickness of about 7 Å. NiTe2 shows outstanding tolerance to CO exposure and stability in water environment, with subsequent good performance in both hydrogen and oxygen evolution reactions. NiTe2-based devices consistently demonstrate superb ambient stability over a timescale as long as one month. Specifically, NiTe2 has been implemented in a device that exhibits both superior performance and environmental stability at frequencies above 40 GHz, with possible applications as a receiver beyond the cutoff frequency of a nanotransistor.
Transition-Metal Dichalcogenide NiTe2: An Ambient-Stable Material for Catalysis and Nanoelectronics
D'Olimpio G.Investigation
;Nardone M.Membro del Collaboration Group
;Ottaviano L.Membro del Collaboration Group
;Politano A.
Supervision
2020-01-01
Abstract
By means of theory and experiments, the application capability of nickel ditelluride (NiTe2) transition-metal dichalcogenide in catalysis and nanoelectronics is assessed. The Te surface termination forms a TeO2 skin in an oxygen environment. In ambient atmosphere, passivation is achieved in less than 30 min with the TeO2 skin having a thickness of about 7 Å. NiTe2 shows outstanding tolerance to CO exposure and stability in water environment, with subsequent good performance in both hydrogen and oxygen evolution reactions. NiTe2-based devices consistently demonstrate superb ambient stability over a timescale as long as one month. Specifically, NiTe2 has been implemented in a device that exhibits both superior performance and environmental stability at frequencies above 40 GHz, with possible applications as a receiver beyond the cutoff frequency of a nanotransistor.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.