Breast and ovarian cancers are the leading and fifth reason for tumor death among females, respectively. Recently, many studies demonstrated antiproliferative activities of natural aliments in cancer. In this study, we investigated the antitumor potential of Olive Leaf Extract (OLE) in triple-negative breast and ovarian cancer cells. A HPLC/DAD analysis on OLE has been performed to assess the total polyphenolics and other secondary metabolites content. HCEpiC, MDA-MB-231, and OVCAR-3 cell lines were used. MTS, Cytofluorimetric, Western Blot analysis were performed to analyze cell viability, cell proliferation, apoptosis, and oxidative stress. Fluorimetric and IncuCyte® analyses were carried out to evaluate apoptosis and mitochondrial function. We confirmed that OLE, containing a quantity of oleuropein of 87 % of the total extract, shows anti-proliferative and pro-apoptotic activity on MDA-MB-231 cells. For the first time, our results indicate that OLE inhibits OVCAR-3 cell viability inducing cell cycle arrest, and it also increases apoptotic cell death up-regulating the protein level of cleaved-PARP and caspase 9. Moreover, our data show that OLE treatment causes a significant decrease in mitochondrial functionality, paralleled by a reduction of mitochondrial membrane potential. Interestingly, OLE increased the level of intracellular and mitochondrial reactive oxygen species (ROS) together with a decreased activity of ROS scavenging enzymes, confirming oxidative stress in both models. Our data demonstrate that mitochondrial ROS generation represented the primary mechanism of OLE antitumor activity, as pretreatment with antioxidant N-acetylcysteine prevented OLE-induced cell cycle arrest and apoptosis.
Olive leaf extract impairs mitochondria by pro-oxidant activity in MDA-MB-231 and OVCAR-3 cancer cells
Maria Grazia Tupone;Vanessa Castelli;Michele d’Angelo;Elisabetta Benedetti;Benedetta Cinque;Maria Grazia Cifone;Rodolfo Ippoliti;Antonio Giordano;Annamaria Cimini
2021-01-01
Abstract
Breast and ovarian cancers are the leading and fifth reason for tumor death among females, respectively. Recently, many studies demonstrated antiproliferative activities of natural aliments in cancer. In this study, we investigated the antitumor potential of Olive Leaf Extract (OLE) in triple-negative breast and ovarian cancer cells. A HPLC/DAD analysis on OLE has been performed to assess the total polyphenolics and other secondary metabolites content. HCEpiC, MDA-MB-231, and OVCAR-3 cell lines were used. MTS, Cytofluorimetric, Western Blot analysis were performed to analyze cell viability, cell proliferation, apoptosis, and oxidative stress. Fluorimetric and IncuCyte® analyses were carried out to evaluate apoptosis and mitochondrial function. We confirmed that OLE, containing a quantity of oleuropein of 87 % of the total extract, shows anti-proliferative and pro-apoptotic activity on MDA-MB-231 cells. For the first time, our results indicate that OLE inhibits OVCAR-3 cell viability inducing cell cycle arrest, and it also increases apoptotic cell death up-regulating the protein level of cleaved-PARP and caspase 9. Moreover, our data show that OLE treatment causes a significant decrease in mitochondrial functionality, paralleled by a reduction of mitochondrial membrane potential. Interestingly, OLE increased the level of intracellular and mitochondrial reactive oxygen species (ROS) together with a decreased activity of ROS scavenging enzymes, confirming oxidative stress in both models. Our data demonstrate that mitochondrial ROS generation represented the primary mechanism of OLE antitumor activity, as pretreatment with antioxidant N-acetylcysteine prevented OLE-induced cell cycle arrest and apoptosis.File | Dimensione | Formato | |
---|---|---|---|
Biomedicine & Pharmacotherapy.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
10.2 MB
Formato
Adobe PDF
|
10.2 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.