We study a system of parabolic equations consisting of a double nonlinear parabolic equation of Forchheimer type coupled with a semilinear parabolic equation. The system describes a fluid-like driven system for active-passive pedestrian dynamics. The structure of the nonlinearity of the coupling allows us to prove the uniqueness of solutions. We provide also the stability estimate of solutions with respect to selected parameters.

Uniqueness and stability with respect to parameters of solutions to a fluid-like driven system for active-passive pedestrian dynamics

Colangeli M.;
2021-01-01

Abstract

We study a system of parabolic equations consisting of a double nonlinear parabolic equation of Forchheimer type coupled with a semilinear parabolic equation. The system describes a fluid-like driven system for active-passive pedestrian dynamics. The structure of the nonlinearity of the coupling allows us to prove the uniqueness of solutions. We provide also the stability estimate of solutions with respect to selected parameters.
File in questo prodotto:
File Dimensione Formato  
1912.12041.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 233.01 kB
Formato Adobe PDF
233.01 kB Adobe PDF Visualizza/Apri
1-s2.0-S0022247X20308659-main.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 346.85 kB
Formato Adobe PDF
346.85 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/153035
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact