We study a system of parabolic equations consisting of a double nonlinear parabolic equation of Forchheimer type coupled with a semilinear parabolic equation. The system describes a fluid-like driven system for active-passive pedestrian dynamics. The structure of the nonlinearity of the coupling allows us to prove the uniqueness of solutions. We provide also the stability estimate of solutions with respect to selected parameters.
Uniqueness and stability with respect to parameters of solutions to a fluid-like driven system for active-passive pedestrian dynamics
Colangeli M.;
2021-01-01
Abstract
We study a system of parabolic equations consisting of a double nonlinear parabolic equation of Forchheimer type coupled with a semilinear parabolic equation. The system describes a fluid-like driven system for active-passive pedestrian dynamics. The structure of the nonlinearity of the coupling allows us to prove the uniqueness of solutions. We provide also the stability estimate of solutions with respect to selected parameters.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1912.12041.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Dominio pubblico
Dimensione
233.01 kB
Formato
Adobe PDF
|
233.01 kB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0022247X20308659-main.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
346.85 kB
Formato
Adobe PDF
|
346.85 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.