In this study, we developed a one-dimensional Timoshenko beam model, embedded in a 3D space for static and dynamic analyses of beam-like structures. These are grid cylinders, that is, micro-structured bodies, made of a periodic and specifically designed three-dimensional assembly of beams. Derivation is performed in the framework of the direct 1D approach, while the constitutive law is determined by a homogenization procedure based on an energy equivalence between a cell of the periodic model and a segment of the solid beam. Warping of the cross-section, caused by shear and torsion, is approximatively taken into account by the concept of a shear factor, namely, a corrective factor for the constitutive coefficients of the equivalent beam. The inertial properties of the Timoshenko model are analytically identified under the hypothesis, and the masses are lumped at the joints. Linear static and dynamic responses of some micro-structured beams, taken as case studies, are analyzed, and a comparison between the results given by the Timoshenko model and those obtained by Finite-Element analyses on 3D frames is made. In this framework, the effectiveness of the equivalent model and its limits of applicability are highlighted.

Static and dynamic responses of micro-structured beams

D'Annibale F.;Ferretti M.;Luongo A.
2020

Abstract

In this study, we developed a one-dimensional Timoshenko beam model, embedded in a 3D space for static and dynamic analyses of beam-like structures. These are grid cylinders, that is, micro-structured bodies, made of a periodic and specifically designed three-dimensional assembly of beams. Derivation is performed in the framework of the direct 1D approach, while the constitutive law is determined by a homogenization procedure based on an energy equivalence between a cell of the periodic model and a segment of the solid beam. Warping of the cross-section, caused by shear and torsion, is approximatively taken into account by the concept of a shear factor, namely, a corrective factor for the constitutive coefficients of the equivalent beam. The inertial properties of the Timoshenko model are analytically identified under the hypothesis, and the masses are lumped at the joints. Linear static and dynamic responses of some micro-structured beams, taken as case studies, are analyzed, and a comparison between the results given by the Timoshenko model and those obtained by Finite-Element analyses on 3D frames is made. In this framework, the effectiveness of the equivalent model and its limits of applicability are highlighted.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/153048
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact