The notion of rigid commutators is introduced to determine the sequence of the logarithms of the indices of a certain normalizer chain in the Sylow $2$-subgroup of the symmetric group on $2^n$ letters. The terms of this sequence are proved to be those of the partial sums of the partitions of an integer into at least two distinct parts, that relates to a famous Euler's partition theorem.

Rigid commutators and a normalizer chain

riccardo aragona
;
roberto civino;norberto gavioli;carlo maria scoppola
2021

Abstract

The notion of rigid commutators is introduced to determine the sequence of the logarithms of the indices of a certain normalizer chain in the Sylow $2$-subgroup of the symmetric group on $2^n$ letters. The terms of this sequence are proved to be those of the partial sums of the partitions of an integer into at least two distinct parts, that relates to a famous Euler's partition theorem.
File in questo prodotto:
File Dimensione Formato  
Aragona2021_Article_RigidCommutatorsAndANormalizer.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 466.15 kB
Formato Adobe PDF
466.15 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/153131
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact