We study the gap closure with pressure of crystalline molecular hydrogen. The gaps are obtained from grand-canonical quantum Monte Carlo methods properly extended to quantum and thermal crystals, simulated by coupled electron ion Monte Carlo methods. Nuclear zero point effects cause a large reduction in the gap (∼2 eV). Depending on the structure, the fundamental indirect gap closes between 380 and 530 GPa for ideal crystals and 330-380 GPa for quantum crystals. Beyond this pressure the system enters into a bad metal phase where the density of states at the Fermi level increases with pressure up to ∼450-500 GPa when the direct gap closes. Our work partially supports the interpretation of recent experiments in high pressure hydrogen.

Energy Gap Closure of Crystalline Molecular Hydrogen with Pressure

Pierleoni C.
2020

Abstract

We study the gap closure with pressure of crystalline molecular hydrogen. The gaps are obtained from grand-canonical quantum Monte Carlo methods properly extended to quantum and thermal crystals, simulated by coupled electron ion Monte Carlo methods. Nuclear zero point effects cause a large reduction in the gap (∼2 eV). Depending on the structure, the fundamental indirect gap closes between 380 and 530 GPa for ideal crystals and 330-380 GPa for quantum crystals. Beyond this pressure the system enters into a bad metal phase where the density of states at the Fermi level increases with pressure up to ∼450-500 GPa when the direct gap closes. Our work partially supports the interpretation of recent experiments in high pressure hydrogen.
File in questo prodotto:
File Dimensione Formato  
Gorelov et al. - 2020 - Energy gap closure of crystalline molecular hydrogen with pressure - Physical Review Letters.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 1.46 MB
Formato Adobe PDF
1.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/153380
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 14
social impact