The distortionless propagation of signals in a medium offers a way to preserve the signal integrity. There exists a condition for distortionless propagation on a transmission line known as the Heaviside condition. This paper proposes the use of the Heaviside condition to characterize and design magneto-dielectric materials that provide distortionless propagation in a specified finite frequency band. Plane wave propagation in a magneto-dielectric material is modeled by a transmission line model, thereby assuming transverse electromagnetic mode propagation. Then, the Heaviside condition is employed to derive the frequency-dependent permittivity and permeability functions of the material in rational form, so they satisfy the condition in a specified frequency interval. A procedure to design such materials is described. A numerical example of the design process is provided and an illustration of the effectiveness of modeled material in fulfilling the Heaviside condition in a specified frequency interval both in the time and frequency domains is given, indicating the validity of the approximation. The design procedure is as such a suitable preliminary design guide for deriving a realizable description of a magnetodielectric, exhibiting the distortionless property in the desired frequency interval, with certain specified requirements put on the loss, or the permeability and permittivity values satisfied. The obtained results may initiate further investigations into the bandwidth restrictions of the approximation, on closed-form design solutions, and the practical realization of such materials.

Bandlimited Distortionless Material Design by an Approximation of the Heaviside Condition

Antonini G.
;
De Lauretis M.
2020

Abstract

The distortionless propagation of signals in a medium offers a way to preserve the signal integrity. There exists a condition for distortionless propagation on a transmission line known as the Heaviside condition. This paper proposes the use of the Heaviside condition to characterize and design magneto-dielectric materials that provide distortionless propagation in a specified finite frequency band. Plane wave propagation in a magneto-dielectric material is modeled by a transmission line model, thereby assuming transverse electromagnetic mode propagation. Then, the Heaviside condition is employed to derive the frequency-dependent permittivity and permeability functions of the material in rational form, so they satisfy the condition in a specified frequency interval. A procedure to design such materials is described. A numerical example of the design process is provided and an illustration of the effectiveness of modeled material in fulfilling the Heaviside condition in a specified frequency interval both in the time and frequency domains is given, indicating the validity of the approximation. The design procedure is as such a suitable preliminary design guide for deriving a realizable description of a magnetodielectric, exhibiting the distortionless property in the desired frequency interval, with certain specified requirements put on the loss, or the permeability and permittivity values satisfied. The obtained results may initiate further investigations into the bandwidth restrictions of the approximation, on closed-form design solutions, and the practical realization of such materials.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/153403
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact