This paper concerns with the motion of the interface for a damped hyperbolic Allen-Cahn equation, in a bounded domain of ℝn, for n = 2 or n = 3. In particular, we focus the attention on radially symmetric solutions and extend to the hyperbolic framework some well-known results of the classic parabolic case: it is shown that, under appropriate assumptions on the initial data and on the boundary conditions, the interface moves by mean curvature as the diffusion coefficient goes to 0.
Titolo: | Motion of interfaces for a damped hyperbolic Allen-Cahn equation |
Autori: | |
Data di pubblicazione: | 2020 |
Rivista: | |
Handle: | http://hdl.handle.net/11697/153465 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.