Let (X, L) be a complex polarized threefold which is a conic fibration over a smooth surface. The complex affine cubic Γ representing the Hilbert curve of (X, L) is studied, paying special attention to its reducibility. In particular, Γ contains a specific line ℓ 0 if and only if X has no singular fibers. This leads to characterize the existence of a triple point simply in terms of numerical invariants of X. Other lines may cause the reducibility of Γ, which in this case depends also on the polarization. This situation is analyzed for a special class of conic fibrations.
Titolo: | Hilbert curves of conic fibrations over smooth surfaces |
Autori: | |
Data di pubblicazione: | 2021 |
Rivista: | |
Handle: | http://hdl.handle.net/11697/153497 |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
FaLa_August4_2020.pdf | Articolo Principale | Documento in Post-print | ![]() | Utenti riconosciuti Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.