Let (X, L) be a complex polarized threefold which is a conic fibration over a smooth surface. The complex affine cubic Γ representing the Hilbert curve of (X, L) is studied, paying special attention to its reducibility. In particular, Γ contains a specific line ℓ 0 if and only if X has no singular fibers. This leads to characterize the existence of a triple point simply in terms of numerical invariants of X. Other lines may cause the reducibility of Γ, which in this case depends also on the polarization. This situation is analyzed for a special class of conic fibrations.
Hilbert curves of conic fibrations over smooth surfaces
Fania M. L.
;
2021-01-01
Abstract
Let (X, L) be a complex polarized threefold which is a conic fibration over a smooth surface. The complex affine cubic Γ representing the Hilbert curve of (X, L) is studied, paying special attention to its reducibility. In particular, Γ contains a specific line ℓ 0 if and only if X has no singular fibers. This leads to characterize the existence of a triple point simply in terms of numerical invariants of X. Other lines may cause the reducibility of Γ, which in this case depends also on the polarization. This situation is analyzed for a special class of conic fibrations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
FaLa_August4_2020.pdf
solo utenti autorizzati
Descrizione: Articolo Principale
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
383.56 kB
Formato
Adobe PDF
|
383.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.