In this paper we remove the solid incidence assumption in the characterization of J. Schillewaert (A characterization of quadrics by intersection numbers, Des. Codes Cryptogr., 47 (2008), 165-175) by proving that quadric plane incidence numbers implies quadric solid incidence numbers, except for the dual complete 11-cap of PG(4, 3). Furthermore, new characterizations of the parabolic quadric Q(4, q) and the ovoidal cone of PG(4, q) are provided.

Classifying sets of class [1, q + 1, 2q + 1, q^2 + q + 1]_2 in PG(r, q), r >= 3.

Innamorati Stefano;Zuanni Fulvio
2021-01-01

Abstract

In this paper we remove the solid incidence assumption in the characterization of J. Schillewaert (A characterization of quadrics by intersection numbers, Des. Codes Cryptogr., 47 (2008), 165-175) by proving that quadric plane incidence numbers implies quadric solid incidence numbers, except for the dual complete 11-cap of PG(4, 3). Furthermore, new characterizations of the parabolic quadric Q(4, q) and the ovoidal cone of PG(4, q) are provided.
File in questo prodotto:
File Dimensione Formato  
Innamorati-Zuanni2021.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 143.58 kB
Formato Adobe PDF
143.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/153518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact