In this paper we remove the solid incidence assumption in the characterization of J. Schillewaert (A characterization of quadrics by intersection numbers, Des. Codes Cryptogr., 47 (2008), 165-175) by proving that quadric plane incidence numbers implies quadric solid incidence numbers, except for the dual complete 11-cap of PG(4, 3). Furthermore, new characterizations of the parabolic quadric Q(4, q) and the ovoidal cone of PG(4, q) are provided.
Classifying sets of class [1, q + 1, 2q + 1, q^2 + q + 1]_2 in PG(r, q), r >= 3.
Innamorati Stefano;Zuanni Fulvio
2021-01-01
Abstract
In this paper we remove the solid incidence assumption in the characterization of J. Schillewaert (A characterization of quadrics by intersection numbers, Des. Codes Cryptogr., 47 (2008), 165-175) by proving that quadric plane incidence numbers implies quadric solid incidence numbers, except for the dual complete 11-cap of PG(4, 3). Furthermore, new characterizations of the parabolic quadric Q(4, q) and the ovoidal cone of PG(4, q) are provided.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Innamorati-Zuanni2021.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Documento in Pre-print
Licenza:
Dominio pubblico
Dimensione
143.58 kB
Formato
Adobe PDF
|
143.58 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.