In this paper we remove the solid incidence assumption in the characterization of J. Schillewaert (A characterization of quadrics by intersection numbers, Des. Codes Cryptogr., 47 (2008), 165-175) by proving that quadric plane incidence numbers implies quadric solid incidence numbers, except for the dual complete 11-cap of PG(4, 3). Furthermore, new characterizations of the parabolic quadric Q(4, q) and the ovoidal cone of PG(4, q) are provided.
Classifying sets of class [1, q + 1, 2q + 1, q^2 + q + 1]_2 in PG(r, q), r >= 3.
Innamorati Stefano;Zuanni Fulvio
2021
Abstract
In this paper we remove the solid incidence assumption in the characterization of J. Schillewaert (A characterization of quadrics by intersection numbers, Des. Codes Cryptogr., 47 (2008), 165-175) by proving that quadric plane incidence numbers implies quadric solid incidence numbers, except for the dual complete 11-cap of PG(4, 3). Furthermore, new characterizations of the parabolic quadric Q(4, q) and the ovoidal cone of PG(4, q) are provided.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Innamorati-Zuanni2021.pdf
accesso aperto
Descrizione: Articolo
Tipologia:
Documento in Pre-print
Licenza:
Dominio pubblico
Dimensione
143.58 kB
Formato
Adobe PDF
|
143.58 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.