In this paper we remove the solid incidence assumption in the characterization of J. Schillewaert (A characterization of quadrics by intersection numbers, Des. Codes Cryptogr., 47 (2008), 165-175) by proving that quadric plane incidence numbers implies quadric solid incidence numbers, except for the dual complete 11-cap of PG(4, 3). Furthermore, new characterizations of the parabolic quadric Q(4, q) and the ovoidal cone of PG(4, q) are provided.

Classifying sets of class [1, q + 1, 2q + 1, q^2 + q + 1]_2 in PG(r, q), r >= 3.

Innamorati Stefano;Zuanni Fulvio
2021

Abstract

In this paper we remove the solid incidence assumption in the characterization of J. Schillewaert (A characterization of quadrics by intersection numbers, Des. Codes Cryptogr., 47 (2008), 165-175) by proving that quadric plane incidence numbers implies quadric solid incidence numbers, except for the dual complete 11-cap of PG(4, 3). Furthermore, new characterizations of the parabolic quadric Q(4, q) and the ovoidal cone of PG(4, q) are provided.
File in questo prodotto:
File Dimensione Formato  
Innamorati-Zuanni2021.pdf

accesso aperto

Descrizione: Articolo
Tipologia: Documento in Pre-print
Licenza: Dominio pubblico
Dimensione 143.58 kB
Formato Adobe PDF
143.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/153518
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact