In this paper, we study Hegselmann-Krause models with a time-variable time delay. Under appropriate assumptions, we show the exponential asymptotic consensus when the time delay satisfies a suitable smallness assumption. Our main strategies for this are based on Lyapunov functional approach and careful estimates on the trajectories. We then study the mean-field limit from the many-individual Hegselmann-Krause equation to the continuity-type partial differential equation as the number N of individuals goes to infinity. For the limiting equation, we prove global-in-time existence and uniqueness of measure-valued solutions. We also use the fact that constants appearing in the consensus estimates for the particle system are independent of N to extend the exponential consensus result to the continuum model. Finally, some numerical tests are illustrated.
Consensus of the Hegselmann-Krause opinion formation model with time delay
Alessandro Paolucci;Cristina Pignotti
2021-01-01
Abstract
In this paper, we study Hegselmann-Krause models with a time-variable time delay. Under appropriate assumptions, we show the exponential asymptotic consensus when the time delay satisfies a suitable smallness assumption. Our main strategies for this are based on Lyapunov functional approach and careful estimates on the trajectories. We then study the mean-field limit from the many-individual Hegselmann-Krause equation to the continuity-type partial differential equation as the number N of individuals goes to infinity. For the limiting equation, we prove global-in-time existence and uniqueness of measure-valued solutions. We also use the fact that constants appearing in the consensus estimates for the particle system are independent of N to extend the exponential consensus result to the continuum model. Finally, some numerical tests are illustrated.File | Dimensione | Formato | |
---|---|---|---|
opinion_CPP_051120.pdf
non disponibili
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.