The results of simulations of extragalactic propagation of ultra-high energy cosmic rays (UHECRs) have intrinsic uncertainties due to poorly known physical quantities and approximations used in the codes. We quantify the uncertainties in the simulated UHECR spectrum and composition due to different models of extragalactic background light (EBL), different photodisintegration setups, approximations concerning photopion production and the use of different simulation codes. We discuss the results for several representative source scenarios with proton, nitrogen or iron at injection. For this purpose we used SimProp and CRPropa, two publicly available codes for Monte Carlo simulations of UHECR propagation. CRPropa is a detailed and extensive simulation code, while SimProp aims to achieve acceptable results using a simpler code. We show that especially the choices for the EBL model and the photodisintegration setup can have a considerable impact on the simulated UHECR spectrum and composition.

Effects of uncertainties in simulations of extragalactic UHECR propagation, using CRPropa and SimProp

Boncioli D.;
2015-01-01

Abstract

The results of simulations of extragalactic propagation of ultra-high energy cosmic rays (UHECRs) have intrinsic uncertainties due to poorly known physical quantities and approximations used in the codes. We quantify the uncertainties in the simulated UHECR spectrum and composition due to different models of extragalactic background light (EBL), different photodisintegration setups, approximations concerning photopion production and the use of different simulation codes. We discuss the results for several representative source scenarios with proton, nitrogen or iron at injection. For this purpose we used SimProp and CRPropa, two publicly available codes for Monte Carlo simulations of UHECR propagation. CRPropa is a detailed and extensive simulation code, while SimProp aims to achieve acceptable results using a simpler code. We show that especially the choices for the EBL model and the photodisintegration setup can have a considerable impact on the simulated UHECR spectrum and composition.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/153533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 43
  • ???jsp.display-item.citation.isi??? 56
social impact