The molecular basis for epileptogenesis remains poorly defined, but repeated or prolonged seizures can cause altered hippocampal N-methyl d-aspartate receptor (NMDAR) stoichiometry, loss of hippocampal neurons, and aberrant mossy fiber sprouting. Using the muscarinic receptor 1 (m1R) agonist, pilocarpine (PILO), in hippocampal cell cultures we explored the early sequence of molecular events that occur within 24 h of the initial insult and result in altered neuronal function during epileptogenesis. Our findings show that PILO-induced, m1R-mediated, inositol 1,4,5-trisphosphate (IP3) synthesis constitutes an early, crucial biochemical event required for NMDAR hyperactivation and subsequent NADPH oxidase (NOX) activation and NMDAR-independent ERK1/2 phoshorylation. Together, but not separately, NOX activation and ERK1/2 phosphorylation induce alterations in NMDAR stoichiometry through the upregulation of NR1 and NR2B subunits. Lastly, we demonstrated that PILO-mediated oxidative stress alters NMDAR function through the redox modulation of cysteine residues. The in vitro results related to thiol oxidation, NOX activation, ERK1/2 phosphorylation and NMDAR upregulation were confirmed in vivo, 24 h after treatment of adult rats with PILO. These results obtained in PILO-treated primary hippocampal neurons - and confirmed in vivo at the same time-point after PILO - provide a better understanding of the early cellular responses during epileptogenesis and identify potential therapeutic targets to prevent development of chronic epilepsy. © 2011 Elsevier Inc.

Pilocapine alters NMDA receptor expression and function in hippocampal neurons: NADPH oxidase and ERK1/2 mechanisms

Mastroberardino P. G.;
2011-01-01

Abstract

The molecular basis for epileptogenesis remains poorly defined, but repeated or prolonged seizures can cause altered hippocampal N-methyl d-aspartate receptor (NMDAR) stoichiometry, loss of hippocampal neurons, and aberrant mossy fiber sprouting. Using the muscarinic receptor 1 (m1R) agonist, pilocarpine (PILO), in hippocampal cell cultures we explored the early sequence of molecular events that occur within 24 h of the initial insult and result in altered neuronal function during epileptogenesis. Our findings show that PILO-induced, m1R-mediated, inositol 1,4,5-trisphosphate (IP3) synthesis constitutes an early, crucial biochemical event required for NMDAR hyperactivation and subsequent NADPH oxidase (NOX) activation and NMDAR-independent ERK1/2 phoshorylation. Together, but not separately, NOX activation and ERK1/2 phosphorylation induce alterations in NMDAR stoichiometry through the upregulation of NR1 and NR2B subunits. Lastly, we demonstrated that PILO-mediated oxidative stress alters NMDAR function through the redox modulation of cysteine residues. The in vitro results related to thiol oxidation, NOX activation, ERK1/2 phosphorylation and NMDAR upregulation were confirmed in vivo, 24 h after treatment of adult rats with PILO. These results obtained in PILO-treated primary hippocampal neurons - and confirmed in vivo at the same time-point after PILO - provide a better understanding of the early cellular responses during epileptogenesis and identify potential therapeutic targets to prevent development of chronic epilepsy. © 2011 Elsevier Inc.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/153599
Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 83
  • ???jsp.display-item.citation.isi??? 81
social impact