A series of Rh(κ2-BHetA)(η2-coe)(IPr) complexes bearing 1,3-bis-hetereoatomic acidato ligands (BHetA) including carboxylato (O,O), thioacetato (O,S), amidato (O,N), thioamidato (N,S), and amidinato (N,N), have been prepared by reaction of the dinuclear precursor [Rh(μ-Cl)(IPr)(η2-coe)]2 with the corresponding anionic BHetA species. The RhI-NHC-BHetA compounds catalyze the dimerization of aryl alkynes, showing excellent selectivity for the head-to-tail enynes. Among them, the acetanilidato-based catalyst has shown an outstanding catalytic performance reaching unprecedented TOF levels of 2500 h−1 with complete selectivity for the gem-isomer. Investigation of the reaction mechanism supports a non-oxidative pathway in which the BHetA ligand behaves as proton shuttle through intermediate κ1-HBHetA species. However, in the presence of pyridine as additive, the identification of the common RhIIIH(C≡CPh)2(IPr)(py)2 intermediate gives support for an alternative oxidative route.
Rhodium(I)-NHC Complexes Bearing Bidentate Bis-Heteroatomic Acidato Ligands as gem-Selective Catalysts for Alkyne Dimerization
Di Giuseppe A.
;
2020-01-01
Abstract
A series of Rh(κ2-BHetA)(η2-coe)(IPr) complexes bearing 1,3-bis-hetereoatomic acidato ligands (BHetA) including carboxylato (O,O), thioacetato (O,S), amidato (O,N), thioamidato (N,S), and amidinato (N,N), have been prepared by reaction of the dinuclear precursor [Rh(μ-Cl)(IPr)(η2-coe)]2 with the corresponding anionic BHetA species. The RhI-NHC-BHetA compounds catalyze the dimerization of aryl alkynes, showing excellent selectivity for the head-to-tail enynes. Among them, the acetanilidato-based catalyst has shown an outstanding catalytic performance reaching unprecedented TOF levels of 2500 h−1 with complete selectivity for the gem-isomer. Investigation of the reaction mechanism supports a non-oxidative pathway in which the BHetA ligand behaves as proton shuttle through intermediate κ1-HBHetA species. However, in the presence of pyridine as additive, the identification of the common RhIIIH(C≡CPh)2(IPr)(py)2 intermediate gives support for an alternative oxidative route.File | Dimensione | Formato | |
---|---|---|---|
chem.202001584.pdf
solo utenti autorizzati
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
1.58 MB
Formato
Adobe PDF
|
1.58 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.