This Note presents two methods for mean streamwise velocity profiles of fully-developed turbulent pipe and channel flows near smooth walls. The first is the classical approach where the mean streamwise velocity is obtained by solving the momentum equation with an eddy viscosity formulation [R. Absi, A simple eddy viscosity formulation for turbulent boundary layers near smooth walls, C. R. Mecanique 337 (2009) 158–165]. The second approach presents a formulation of the velocity profile based on an analogy with an electric field distribution [C. Di Nucci, E. Fiorucci, Mean velocity profiles of fully-developed turbulent flows near smooth walls, C. R. Mecanique 339 (2011) 388–395] and a formulation for the turbulent shear stress. However, this formulation for the turbulent shear stress shows a weakness. A corrected formulation is presented. Comparisons with DNS data show that the classical approach with the eddy viscosity formulation provides more accurate profiles for both turbulent shear stress and velocity gradient.

On the accuracy of analytical methods for turbulent flows near smooth walls

DI NUCCI, CARMINE
2012

Abstract

This Note presents two methods for mean streamwise velocity profiles of fully-developed turbulent pipe and channel flows near smooth walls. The first is the classical approach where the mean streamwise velocity is obtained by solving the momentum equation with an eddy viscosity formulation [R. Absi, A simple eddy viscosity formulation for turbulent boundary layers near smooth walls, C. R. Mecanique 337 (2009) 158–165]. The second approach presents a formulation of the velocity profile based on an analogy with an electric field distribution [C. Di Nucci, E. Fiorucci, Mean velocity profiles of fully-developed turbulent flows near smooth walls, C. R. Mecanique 339 (2011) 388–395] and a formulation for the turbulent shear stress. However, this formulation for the turbulent shear stress shows a weakness. A corrected formulation is presented. Comparisons with DNS data show that the classical approach with the eddy viscosity formulation provides more accurate profiles for both turbulent shear stress and velocity gradient.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/15573
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact