The effect of chemical (urea) and physical (temperature and high pressure) denaturation on the structural properties of soybean lipoxygenase-1 (LOX1) was analyzed through dynamic fluorescence spectroscopy and circular dichroism. We show that the fluorescence decay of the native protein could be fitted by two lorentzian distributions of lifetimes, centered at 1 and 4 ns. The analysis of the urea-denatured protein suggested that the shorter distribution is mostly due to the tryptophan residues located in the N-terminal domain of LOX1. We also show that a pressure of 2400 bar and a temperature of 55degreesC brought LOX-1 to a state similar to a recently described stable intermediate "I." Analysis of circular dichroism spectra indicated a substantial decrease of alpha-helix compared with beta-structure under denaturing conditions, suggesting a higher stability of the N-terminal compared with the C-terminal domain in the denaturation process. (C) 2001 Elsevier Science.

Effect of denaturants on the structural properties of soybean lipoxygenase-1

Maccarrone M
2001

Abstract

The effect of chemical (urea) and physical (temperature and high pressure) denaturation on the structural properties of soybean lipoxygenase-1 (LOX1) was analyzed through dynamic fluorescence spectroscopy and circular dichroism. We show that the fluorescence decay of the native protein could be fitted by two lorentzian distributions of lifetimes, centered at 1 and 4 ns. The analysis of the urea-denatured protein suggested that the shorter distribution is mostly due to the tryptophan residues located in the N-terminal domain of LOX1. We also show that a pressure of 2400 bar and a temperature of 55degreesC brought LOX-1 to a state similar to a recently described stable intermediate "I." Analysis of circular dichroism spectra indicated a substantial decrease of alpha-helix compared with beta-structure under denaturing conditions, suggesting a higher stability of the N-terminal compared with the C-terminal domain in the denaturation process. (C) 2001 Elsevier Science.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/155768
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact