During immuno-mediated attack of the brain, activation of endocannabinoids represents a protective mechanism, aimed at reducing both neurodegenerative and inflammatory damage through various and partially converging mechanisms that involve neuronal and immune cells. Here, we review the main alterations of the endocannabinoid system (ECS) within the central nervous system and in peripheral blood mononuclear cells, in order to discuss the intriguing observation that elements of the peripheral ECS mirror central dysfunctions of endocannabinoid signaling. As a consequence, elements of blood ECS might serve as novel, non-invasive diagnostic tools of several neurological disorders, and targeting the ECS might be useful for therapeutic purposes. In addition, we discuss the appealing working hypothesis that the presence of type-1 cannabinoid receptors on the luminal side, and that of type-2 cannabinoid receptors on the abluminal side of the blood-brain barrier, could drive a unidirectional transport of AEA in the luminal abluminal direction (i.e., from blood to brain), thus implying that blood may be a reservoir of AEA for the brain. On this basis, it can be expected that an unbalance of the endogenous tone of AEA in the blood may sustain a similar unbalance of its level within the brain, as demonstrated in Huntington's disease, Parkinson's disease, multiple sclerosis, attention-deficit/hyperactivity disorder, schizophrenia, depression and headache.

The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases

Maccarrone M
2008

Abstract

During immuno-mediated attack of the brain, activation of endocannabinoids represents a protective mechanism, aimed at reducing both neurodegenerative and inflammatory damage through various and partially converging mechanisms that involve neuronal and immune cells. Here, we review the main alterations of the endocannabinoid system (ECS) within the central nervous system and in peripheral blood mononuclear cells, in order to discuss the intriguing observation that elements of the peripheral ECS mirror central dysfunctions of endocannabinoid signaling. As a consequence, elements of blood ECS might serve as novel, non-invasive diagnostic tools of several neurological disorders, and targeting the ECS might be useful for therapeutic purposes. In addition, we discuss the appealing working hypothesis that the presence of type-1 cannabinoid receptors on the luminal side, and that of type-2 cannabinoid receptors on the abluminal side of the blood-brain barrier, could drive a unidirectional transport of AEA in the luminal abluminal direction (i.e., from blood to brain), thus implying that blood may be a reservoir of AEA for the brain. On this basis, it can be expected that an unbalance of the endogenous tone of AEA in the blood may sustain a similar unbalance of its level within the brain, as demonstrated in Huntington's disease, Parkinson's disease, multiple sclerosis, attention-deficit/hyperactivity disorder, schizophrenia, depression and headache.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/155930
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 76
  • ???jsp.display-item.citation.isi??? 74
social impact