The challenges in analysis and co-design of wireless networked control systems are well highlighted by considering wireless industrial control protocols. In this perspective, this paper addresses the modeling and design challenge by focusing on WirelessHART, which is a networking protocol stack widely adopted for wireless industrial automation. Specifically, we first develop and validate a Markov channel model that abstracts the WirelessHART radio link subject to channel impairments and interference. The link quality metrics introduced in the theoretical framework are validated in order to enable the accurate representation of the average and extreme behavior of the radio link. By adopting these metrics, it is straightforward to handle a consistent finite-state abstraction. On the basis of such a model, we then derive a stationary Markov jump linear system model that captures the dynamics of a control loop closed over the radio link. Subsequently, we show that our modeling framework is able to discover and manage the challenging subtleties arising from bursty behavior. A relevant theoretical outcome consists in designing a controller that guarantees stability and improves control performance of the closed-loop system, where other approaches based on a simplified channel model fail.

On the impact of accurate radio link modeling on the performance of WirelessHART control networks

Rinaldi C.;Alrish A.;D'Innocenzo A.;Santucci F.
2020

Abstract

The challenges in analysis and co-design of wireless networked control systems are well highlighted by considering wireless industrial control protocols. In this perspective, this paper addresses the modeling and design challenge by focusing on WirelessHART, which is a networking protocol stack widely adopted for wireless industrial automation. Specifically, we first develop and validate a Markov channel model that abstracts the WirelessHART radio link subject to channel impairments and interference. The link quality metrics introduced in the theoretical framework are validated in order to enable the accurate representation of the average and extreme behavior of the radio link. By adopting these metrics, it is straightforward to handle a consistent finite-state abstraction. On the basis of such a model, we then derive a stationary Markov jump linear system model that captures the dynamics of a control loop closed over the radio link. Subsequently, we show that our modeling framework is able to discover and manage the challenging subtleties arising from bursty behavior. A relevant theoretical outcome consists in designing a controller that guarantees stability and improves control performance of the closed-loop system, where other approaches based on a simplified channel model fail.
978-1-7281-6412-0
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/156411
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact