The concept of Industry 4.0 is defined as a common term for technology and the concept of new digital tools to optimize the manufacturing process. Within this framework of modular smart factories, cyber-physical systems monitor physical processes creating a virtual copy of the physical world and making decentralized decisions. This article presents a review of the literature on virtual methods of computer-aided manufacturing processes. Numerical modeling is used to predict stress and temperature distribution, springback, material flow, and prediction of phase transformations, as well as for determining forming forces and the locations of potential wrinkling and cracking. The scope of the review has been limited to the last ten years, with an emphasis on the current state of knowledge. Intelligent production driven by the concept of Industry 4.0 and the demand for high-quality equipment in the aerospace and automotive industries forces the development of manufacturing techniques to progress towards intelligent manufacturing and ecological production. Multi-scale approaches that tend to move from macro-to micro-parameters become very important in numerical optimization programs. The software requirements for optimizing a fully coupled thermo-mechanical microstructure then increase rapidly. The highly advanced simulation programs based on our knowledge of physical and mechanical phenomena occurring in non-homogeneous materials allow a significant acceleration of the introduction of new products and the optimization of existing processes.

Multiphysics modeling and numerical simulation in computer-aided manufacturing processes

Dell'isola F.;
2021

Abstract

The concept of Industry 4.0 is defined as a common term for technology and the concept of new digital tools to optimize the manufacturing process. Within this framework of modular smart factories, cyber-physical systems monitor physical processes creating a virtual copy of the physical world and making decentralized decisions. This article presents a review of the literature on virtual methods of computer-aided manufacturing processes. Numerical modeling is used to predict stress and temperature distribution, springback, material flow, and prediction of phase transformations, as well as for determining forming forces and the locations of potential wrinkling and cracking. The scope of the review has been limited to the last ten years, with an emphasis on the current state of knowledge. Intelligent production driven by the concept of Industry 4.0 and the demand for high-quality equipment in the aerospace and automotive industries forces the development of manufacturing techniques to progress towards intelligent manufacturing and ecological production. Multi-scale approaches that tend to move from macro-to micro-parameters become very important in numerical optimization programs. The software requirements for optimizing a fully coupled thermo-mechanical microstructure then increase rapidly. The highly advanced simulation programs based on our knowledge of physical and mechanical phenomena occurring in non-homogeneous materials allow a significant acceleration of the introduction of new products and the optimization of existing processes.
File in questo prodotto:
File Dimensione Formato  
Trzepiecinski_2021.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 5.71 MB
Formato Adobe PDF
5.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/158077
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact