Abstract: In this paper we consider existence and uniqueness of the three-dimensional static boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elasticity. We call the strain-gradient elasticity model gradient-incomplete such model where the considered strain energy density depends on displacements and only on some specific partial derivatives of displacements of first- and second-order. Such models appear as a result of homogenization of pantographic beam lattices and in some physical models. Using anisotropic Sobolev spaces we analyze the mathematical properties of weak solutions. Null-energy solutions are discussed.
Weak Solutions within the Gradient-Incomplete Strain-Gradient Elasticity
dell'Isola F.
2020-01-01
Abstract
Abstract: In this paper we consider existence and uniqueness of the three-dimensional static boundary-value problems in the framework of so-called gradient-incomplete strain-gradient elasticity. We call the strain-gradient elasticity model gradient-incomplete such model where the considered strain energy density depends on displacements and only on some specific partial derivatives of displacements of first- and second-order. Such models appear as a result of homogenization of pantographic beam lattices and in some physical models. Using anisotropic Sobolev spaces we analyze the mathematical properties of weak solutions. Null-energy solutions are discussed.File | Dimensione | Formato | |
---|---|---|---|
Eremeyev-DellIsola2020.pdf
non disponibili
Descrizione: Articolo principale
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
607.42 kB
Formato
Adobe PDF
|
607.42 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.