Pantographic metamaterials are known for their ability to have large deformation while remaining in the elastic regime. We have performed a set of experiments on 3D printed pantographic unit cells to parametrically investigate their response when undergoing tensile, compression, and shear loading with the aim of i) studying the role of each parameter in the resultant mechanical behavior of the sample, and ii) providing a benchmark for the mathematical models developed to describe pantographic structures. Results show the existence of local extrema in the space of the geometrical parameters, suggesting the use of optimization techniques to find optimal geometrical parameters resulting in desired functionalities. We have also performed tensile relaxation tests on the samples, with the results indicating the complexity of the dynamic behavior and the existence of multiple relaxation characteristic times. Such results can be used to for calibrating mathematical models describing pantographic structures under dynamic loadings.

Parametric Experimentation on Pantographic Unit Cells Reveals Local Extremum Configuration

De Angelo M.;Drobnicki R.;dell'Isola F.;Misra A.
2019

Abstract

Pantographic metamaterials are known for their ability to have large deformation while remaining in the elastic regime. We have performed a set of experiments on 3D printed pantographic unit cells to parametrically investigate their response when undergoing tensile, compression, and shear loading with the aim of i) studying the role of each parameter in the resultant mechanical behavior of the sample, and ii) providing a benchmark for the mathematical models developed to describe pantographic structures. Results show the existence of local extrema in the space of the geometrical parameters, suggesting the use of optimization techniques to find optimal geometrical parameters resulting in desired functionalities. We have also performed tensile relaxation tests on the samples, with the results indicating the complexity of the dynamic behavior and the existence of multiple relaxation characteristic times. Such results can be used to for calibrating mathematical models describing pantographic structures under dynamic loadings.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/158973
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 33
  • ???jsp.display-item.citation.isi??? 23
social impact