In this paper, we reveal that the mathematical discrete model of Hencky type, introduced in [1], is appropriate for describing the mechanical behavior of micro-metric pantographic elementary modules. This behavior does not differ remarkably from what has been observed for milli-metric modules, as we prove with suitably designed experiments. Therefore, we conclude that the concept of pantographic microstructure seems feasible for micro-metrically architected microstructured (meta)materials as well. These results are particularly indicative of the possibility of fabricating materials that can have an underlying pantographic microstructure at micrometric scale, so that its unique behavior can be exploited in a larger range of technological applications.
Force–displacement relationship in micro-metric pantographs: Experiments and numerical simulations
dell'Isola F.;Turco E.
;Misra A.;
2019-01-01
Abstract
In this paper, we reveal that the mathematical discrete model of Hencky type, introduced in [1], is appropriate for describing the mechanical behavior of micro-metric pantographic elementary modules. This behavior does not differ remarkably from what has been observed for milli-metric modules, as we prove with suitably designed experiments. Therefore, we conclude that the concept of pantographic microstructure seems feasible for micro-metrically architected microstructured (meta)materials as well. These results are particularly indicative of the possibility of fabricating materials that can have an underlying pantographic microstructure at micrometric scale, so that its unique behavior can be exploited in a larger range of technological applications.Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.