In this paper, we present a new matrix approach for the analysis of subdivision schemes whose non-stationarity is due to linear dependency on parameters whose values vary in a compact set. Indeed, we show how to check the convergence in Cℓ(ℝs) and determine the Hölder regularity of such level and parameter dependent schemes efficiently via the joint spectral radius approach. The efficiency of this method and the important role of the parameter dependency are demonstrated on several examples of subdivision schemes whose properties improve the properties of the corresponding stationary schemes.

Limits of level and parameter dependent subdivision schemes: A matrix approach

Guglielmi N.;Protasov V.
2016-01-01

Abstract

In this paper, we present a new matrix approach for the analysis of subdivision schemes whose non-stationarity is due to linear dependency on parameters whose values vary in a compact set. Indeed, we show how to check the convergence in Cℓ(ℝs) and determine the Hölder regularity of such level and parameter dependent schemes efficiently via the joint spectral radius approach. The efficiency of this method and the important role of the parameter dependency are demonstrated on several examples of subdivision schemes whose properties improve the properties of the corresponding stationary schemes.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/159781
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact