The Western Mediterranean Sea is often affected by heavy precipitation which frequently generates floods or even flash floods. These events generally produce brief but major freshwater inputs in the ocean. In order to evaluate the sensitivity to the representation of river freshwater input, three different runoff forcing dataset are used to drive the NEMO ocean model: a monthly climatology, an observational dataset with a daily or a hourly frequency. The sensitivity is investigated over the first Special Observation Period (SOP1) of the HyMeX program that took place in autumn 2012, in two configurations of NEMO: the first is WMED36 over the Western Mediterranean Sea at 1/36°-resolution and the second is a new configuration covering the North-Western Mediterranean Sea with a 1/72°-resolution named NWMED72. With NWMED72, the impact of the representation of the river freshwater flux, i.e. moving from a surface flux to a vertical distribution of the flux, is also evaluated. The results show that the ocean stratification is significantly modified locally in simulations where runoff observations are used compared to those using the climatology. The sea surface salinity is modified as well as the mixed layer which is thinner as bounded by a well marked halocline. The sea surface temperature is also impacted by the change in runoff frequency. Moreover, the current intensity in river plume during flood is increased. Vertical profiles of salinity and temperature and thus the mixed layer depth are changed when the runoff forcing is distributed over a depth. Those changes are limited and very local but the realism of the river runoff input is improved.

Impact of the representation of the freshwater river input in the Western Mediterranean Sea

Verdecchia M.;
2018

Abstract

The Western Mediterranean Sea is often affected by heavy precipitation which frequently generates floods or even flash floods. These events generally produce brief but major freshwater inputs in the ocean. In order to evaluate the sensitivity to the representation of river freshwater input, three different runoff forcing dataset are used to drive the NEMO ocean model: a monthly climatology, an observational dataset with a daily or a hourly frequency. The sensitivity is investigated over the first Special Observation Period (SOP1) of the HyMeX program that took place in autumn 2012, in two configurations of NEMO: the first is WMED36 over the Western Mediterranean Sea at 1/36°-resolution and the second is a new configuration covering the North-Western Mediterranean Sea with a 1/72°-resolution named NWMED72. With NWMED72, the impact of the representation of the river freshwater flux, i.e. moving from a surface flux to a vertical distribution of the flux, is also evaluated. The results show that the ocean stratification is significantly modified locally in simulations where runoff observations are used compared to those using the climatology. The sea surface salinity is modified as well as the mixed layer which is thinner as bounded by a well marked halocline. The sea surface temperature is also impacted by the change in runoff frequency. Moreover, the current intensity in river plume during flood is increased. Vertical profiles of salinity and temperature and thus the mixed layer depth are changed when the runoff forcing is distributed over a depth. Those changes are limited and very local but the realism of the river runoff input is improved.
File in questo prodotto:
File Dimensione Formato  
2018Hymex.pdf

non disponibili

Tipologia: Documento in Versione Editoriale
Licenza: Dominio pubblico
Dimensione 9.57 MB
Formato Adobe PDF
9.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/159842
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact