The Software Transactional Memory (STM) paradigm has gained momentum thanks to its ability to provide synchronization transparency in concurrent applications. With this paradigm, accesses to data structures that are shared among multiple threads are carried out within transactions, which are properly handled by the STM layer with no intervention by the application code. In this article we propose an enhancement of typical STM architectures which allows supporting partial rollback of active transactions, as opposed to the typical case where a rollback of a transaction entails squashing all the already-performed work. Our partial rollback scheme is still transparent to the application programmer and has been implemented for x86-64 architectures and for the ELF format, thus being largely usable on POSIX-compliant systems hosted on top of off-the-shelf architectures. We integrated it within the TinySTM open-source library and we present experimental results for the STAMP STM benchmark run on top of a 32-core HP ProLiant server. © 2013 Springer-Verlag.

Transparent support for partial rollback in software transactional memories

DI SANZO, PIERANGELO;
2013-01-01

Abstract

The Software Transactional Memory (STM) paradigm has gained momentum thanks to its ability to provide synchronization transparency in concurrent applications. With this paradigm, accesses to data structures that are shared among multiple threads are carried out within transactions, which are properly handled by the STM layer with no intervention by the application code. In this article we propose an enhancement of typical STM architectures which allows supporting partial rollback of active transactions, as opposed to the typical case where a rollback of a transaction entails squashing all the already-performed work. Our partial rollback scheme is still transparent to the application programmer and has been implemented for x86-64 architectures and for the ELF format, thus being largely usable on POSIX-compliant systems hosted on top of off-the-shelf architectures. We integrated it within the TinySTM open-source library and we present experimental results for the STAMP STM benchmark run on top of a 32-core HP ProLiant server. © 2013 Springer-Verlag.
2013
9783642400469
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/160372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact