Seafloor geophysical instrumentation is challenging to deploy and maintain but critical for studying submarine earthquakes and Earth's interior. Emerging fiber-optic sensing technologies that can leverage submarine telecommunication cables present an opportunity to fill the data gap. We successfully sensed seismic and water waves over a 10,000-kilometer-long submarine cable connecting Los Angeles, California, and Valparaiso, Chile, by monitoring the polarization of regular optical telecommunication channels. We detected multiple moderate-to-large earthquakes along the cable in the 10-millihertz to 5-hertz band. We also recorded pressure signals from ocean swells in the primary microseism band, implying the potential for tsunami sensing. Our method, because it does not require specialized equipment, laser sources, or dedicated fibers, is highly scalable for converting global submarine cables into continuous real-time earthquake and tsunami observatories.
Optical polarization-based seismic and water wave sensing on transoceanic cables
Mecozzi, Antonio;
2021-01-01
Abstract
Seafloor geophysical instrumentation is challenging to deploy and maintain but critical for studying submarine earthquakes and Earth's interior. Emerging fiber-optic sensing technologies that can leverage submarine telecommunication cables present an opportunity to fill the data gap. We successfully sensed seismic and water waves over a 10,000-kilometer-long submarine cable connecting Los Angeles, California, and Valparaiso, Chile, by monitoring the polarization of regular optical telecommunication channels. We detected multiple moderate-to-large earthquakes along the cable in the 10-millihertz to 5-hertz band. We also recorded pressure signals from ocean swells in the primary microseism band, implying the potential for tsunami sensing. Our method, because it does not require specialized equipment, laser sources, or dedicated fibers, is highly scalable for converting global submarine cables into continuous real-time earthquake and tsunami observatories.File | Dimensione | Formato | |
---|---|---|---|
931.full.pdf
non disponibili
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
2.29 MB
Formato
Adobe PDF
|
2.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
abe6648_Zhan_SM.pdf
non disponibili
Descrizione: Supplementary material
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
9.45 MB
Formato
Adobe PDF
|
9.45 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.