In this paper, a novel single-loop flatness-based controller (FBC) is proposed to control the grid-side current in a shunt converter connected to a weak grid through an LCL-filter. After its mathematical description, the paper reports controller implementation and some performance comparisons with two distinct implementations of the widely diffused vector current control approach, during balanced and unbalanced grid voltages, and weak grid conditions. Obtained results highlight higher tracking capability and better dynamic response of the proposed FBC. Moreover, because of its reduced negative conductance region, unstable behaviors that can be observed in weak grids appear significantly improved due to a reduced influence of the phase-locked loop system.

Differential Flatness based Performance Enhancement of a Vector Controlled VSC with an LCL-filter for Weak Grids

Khalid H. A.;Cecati C.;
2021-01-01

Abstract

In this paper, a novel single-loop flatness-based controller (FBC) is proposed to control the grid-side current in a shunt converter connected to a weak grid through an LCL-filter. After its mathematical description, the paper reports controller implementation and some performance comparisons with two distinct implementations of the widely diffused vector current control approach, during balanced and unbalanced grid voltages, and weak grid conditions. Obtained results highlight higher tracking capability and better dynamic response of the proposed FBC. Moreover, because of its reduced negative conductance region, unstable behaviors that can be observed in weak grids appear significantly improved due to a reduced influence of the phase-locked loop system.
File in questo prodotto:
File Dimensione Formato  
Differential Flatness based Performance Enhancement of a Vector Controlled VSC with an LCL-filter for Weak Grids-IEEE_ACCESS_2021.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Dominio pubblico
Dimensione 7.75 MB
Formato Adobe PDF
7.75 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/160670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact