Forest emissions of biogenic volatile organic compounds (BVOCs), such as isoprene and other terpenes, play a role in the production of tropospheric ozone and aerosols. In a northern Michigan forest, the direct measurement of total OH reactivity, which is the inverse of the OH lifetime, was significantly greater than expected. The difference between measured and expected OH reactivity, called the missing OH reactivity, increased with temperature, as did emission rates for terpenes and other BVOCs. These measurements are consistent with the hypothesis that unknown reactive BVOCs, perhaps terpenes, provide the missing OH reactivity
Missing OH reactivity in a forest:Evidence for unknown reactive biogenic VOCs
DI CARLO, PIERO;
2004-01-01
Abstract
Forest emissions of biogenic volatile organic compounds (BVOCs), such as isoprene and other terpenes, play a role in the production of tropospheric ozone and aerosols. In a northern Michigan forest, the direct measurement of total OH reactivity, which is the inverse of the OH lifetime, was significantly greater than expected. The difference between measured and expected OH reactivity, called the missing OH reactivity, increased with temperature, as did emission rates for terpenes and other BVOCs. These measurements are consistent with the hypothesis that unknown reactive BVOCs, perhaps terpenes, provide the missing OH reactivityPubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.