In this paper we consider a family of interacting particle systems on $[-N, N]$ that arises as a natural model for current reservoirs and Fick's law. We study the exponential rate of convergence to the stationary measure, which we prove to be of the order $N^{-2}$.

Exponential rate of convergence in current reservoirs

DE MASI, Anna;E. Presutti;
2015

Abstract

In this paper we consider a family of interacting particle systems on $[-N, N]$ that arises as a natural model for current reservoirs and Fick's law. We study the exponential rate of convergence to the stationary measure, which we prove to be of the order $N^{-2}$.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/16448
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact