In this paper we consider a family of interacting particle systems on $[-N, N]$ that arises as a natural model for current reservoirs and Fick's law. We study the exponential rate of convergence to the stationary measure, which we prove to be of the order $N^{-2}$.
Exponential rate of convergence in current reservoirs
DE MASI, Anna;E. Presutti;
2015-01-01
Abstract
In this paper we consider a family of interacting particle systems on $[-N, N]$ that arises as a natural model for current reservoirs and Fick's law. We study the exponential rate of convergence to the stationary measure, which we prove to be of the order $N^{-2}$.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
BEJ628.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Copyright dell'editore
Dimensione
103.39 kB
Formato
Adobe PDF
|
103.39 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


