Pantetheinase is an ubiquitous enzyme which hydrolyses D-pantetheine into cysteamine and pantothenate (vitamin B5) on the dissimilative pathway of CoA. Pantetheinase isoforms are encoded by the Vnn (vanin) genes and Vnn1 is the predominant tissue isoform in mice and humans. In the present article, we review the results showing the regulation of Vnn1 expression during developmental, repair and inflammatory situations and the impact of a Vnn1 deficiency in mouse models of pathologies. We document the involvement of the Vnn1 pantetheinase in situations of increased tissue needs and propose that Vnn1 through recycling of pantothenate and release of cysteamine in tissues participates in the adaptive response of the tissue to stress.

Pantetheinase is an ubiquitous enzyme which hydrolyses d-pantetheine into cysteamine and pantothenate (vitamin B5) on the dissimilative pathway of CoA. Pantetheinase isoforms are encoded by the Vnn (vanin) genes and Vnn1 is the predominant tissue isoform in mice and humans. In the present article, we review the results showing the regulation of Vnn1 expression during developmental, repair and inflammatory situations and the impact of a Vnn1 deficiency in mouse models of pathologies. We document the involvement of the Vnn1 pantetheinase in situations of increased tissue needs and propose that Vnn1 through recycling of pantothenate and release of cysteamine in tissues participates in the adaptive response of the tissue to stress. © The Authors Journal compilation © 2014 Biochemical Society.

Role of the Vnn1 pantetheinase in tissue tolerance to stress

PITARI, Giuseppina;
2014-01-01

Abstract

Pantetheinase is an ubiquitous enzyme which hydrolyses d-pantetheine into cysteamine and pantothenate (vitamin B5) on the dissimilative pathway of CoA. Pantetheinase isoforms are encoded by the Vnn (vanin) genes and Vnn1 is the predominant tissue isoform in mice and humans. In the present article, we review the results showing the regulation of Vnn1 expression during developmental, repair and inflammatory situations and the impact of a Vnn1 deficiency in mouse models of pathologies. We document the involvement of the Vnn1 pantetheinase in situations of increased tissue needs and propose that Vnn1 through recycling of pantothenate and release of cysteamine in tissues participates in the adaptive response of the tissue to stress. © The Authors Journal compilation © 2014 Biochemical Society.
2014
Pantetheinase is an ubiquitous enzyme which hydrolyses D-pantetheine into cysteamine and pantothenate (vitamin B5) on the dissimilative pathway of CoA. Pantetheinase isoforms are encoded by the Vnn (vanin) genes and Vnn1 is the predominant tissue isoform in mice and humans. In the present article, we review the results showing the regulation of Vnn1 expression during developmental, repair and inflammatory situations and the impact of a Vnn1 deficiency in mouse models of pathologies. We document the involvement of the Vnn1 pantetheinase in situations of increased tissue needs and propose that Vnn1 through recycling of pantothenate and release of cysteamine in tissues participates in the adaptive response of the tissue to stress.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/16465
Citazioni
  • ???jsp.display-item.citation.pmc??? 26
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 51
social impact