Documents' summarization techniques automatically extract relevant information from different sources with respect to a list of topics: they can be profitably used by a variety of applications and in particular for automatic indexing and categorization in order to facilitate the production and delivery of new multimedia contents. In this paper we propose a novel approach for summarizing documents retrieved from the Internet: we propose to capture the semantic nature of a document, expressed in natural language, in order to retrieve a number of RDF triplets and to clusterize these ones aggregating similar information. An overview of the system and some preliminary results are described. © 2010 IEEE.

Semantic summarization of web documents

Persia F.;
2010

Abstract

Documents' summarization techniques automatically extract relevant information from different sources with respect to a list of topics: they can be profitably used by a variety of applications and in particular for automatic indexing and categorization in order to facilitate the production and delivery of new multimedia contents. In this paper we propose a novel approach for summarizing documents retrieved from the Internet: we propose to capture the semantic nature of a document, expressed in natural language, in order to retrieve a number of RDF triplets and to clusterize these ones aggregating similar information. An overview of the system and some preliminary results are described. © 2010 IEEE.
978-1-4244-7912-2
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/166109
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact