Exploiting the transmission and reception of low frequency ultrasounds in air is often associated with the innate echolocating abilities of some mammals, later emulated with sophisticated electronic systems, to obtain information about unstructured environments. Here, we present a novel approach for the reception of ultrasounds in air, which exploits a piezopolymer broadband sensor and an electronic interface based on a second-generation voltage conveyor (VCII). Taking advantage of its capability to manipulate both voltage and current signals, in this paper, we propose an extremely simple interface that presents a sensitivity level of about −100 dB, which is in line with commercially available references. The presented results are obtained without any filtration stage. The second-generation voltage conveyor active device is implemented through a commercially available AD844, with a supply voltage of ±15 V.

A second-generation voltage-conveyor-based interface for ultrasonic pvdf sensors

Barile G.;Stornelli V.;Ferri G.
2021

Abstract

Exploiting the transmission and reception of low frequency ultrasounds in air is often associated with the innate echolocating abilities of some mammals, later emulated with sophisticated electronic systems, to obtain information about unstructured environments. Here, we present a novel approach for the reception of ultrasounds in air, which exploits a piezopolymer broadband sensor and an electronic interface based on a second-generation voltage conveyor (VCII). Taking advantage of its capability to manipulate both voltage and current signals, in this paper, we propose an extremely simple interface that presents a sensitivity level of about −100 dB, which is in line with commercially available references. The presented results are obtained without any filtration stage. The second-generation voltage conveyor active device is implemented through a commercially available AD844, with a supply voltage of ±15 V.
File in questo prodotto:
File Dimensione Formato  
micromachines-12-00099-v2.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 5.52 MB
Formato Adobe PDF
5.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/166324
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact