Recommender systems help people in retrieving information that match their preferences by recommending products or services from a large number of candidates, and support people in making decisions in various contexts: what items to buy, which movie to watch or even who they can invite to their social network. They are especially useful in environments characterized by a vast amount of information, since they can e.ectively select a small subset of items that appear to fit the user's needs. We present the main points related to recommender systems using multimedia data, especially for social networks applications. We also describe, as an example, a framework developed at the University of Naples Federico II. It provides customized recommendations by originally combining intrinsic features of multimedia objects (low-level and semantic similarity), past behavior of individual users and overall behavior of the entire community of users, and eventually considering users' preferences and social interests.

Recommendation of multimedia objects for social network applications

Persia F.;
2014

Abstract

Recommender systems help people in retrieving information that match their preferences by recommending products or services from a large number of candidates, and support people in making decisions in various contexts: what items to buy, which movie to watch or even who they can invite to their social network. They are especially useful in environments characterized by a vast amount of information, since they can e.ectively select a small subset of items that appear to fit the user's needs. We present the main points related to recommender systems using multimedia data, especially for social networks applications. We also describe, as an example, a framework developed at the University of Naples Federico II. It provides customized recommendations by originally combining intrinsic features of multimedia objects (low-level and semantic similarity), past behavior of individual users and overall behavior of the entire community of users, and eventually considering users' preferences and social interests.
File in questo prodotto:
File Dimensione Formato  
paper-47.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Versione Editoriale
Licenza: Dominio pubblico
Dimensione 1.32 MB
Formato Adobe PDF
1.32 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/166560
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact