This paper focuses on the simulation of irregular stone masonry by the lattice discrete particle model (LDPM), which simulates the fracture and failure behavior of quasi-brittle heterogeneous materials by modeling the interaction among coarse material heterogeneities. LDPM is formulated at the length scale of the masonry stones whose interaction is described through constitutive equations featuring softening in tension and strain hardening in compression. The numerical results relevant to diagonal compression tests show that the intrinsic stochastic character of LDPM can quantify the variation of the mechanical properties of irregular masonry resulting from random stone size and stone-size distribution. Furthermore, the paper presents an analysis of the size effect on irregular stone masonry structures. This was obtained by simulating the shear behavior of geometrically similar samples of different sizes. The simulations demonstrate that increasing structural size leads to a significant reduction of both structural strength and structural ductility. The magnitude of the predicted size effect suggests that, contrary to typical experimental results on reduced size samples, real irregular masonry structures must be considered as perfectly brittle.

Lattice Discrete Particle Model for the Simulation of Irregular Stone Masonry

Angiolilli M.;Gregori A.;
2021-01-01

Abstract

This paper focuses on the simulation of irregular stone masonry by the lattice discrete particle model (LDPM), which simulates the fracture and failure behavior of quasi-brittle heterogeneous materials by modeling the interaction among coarse material heterogeneities. LDPM is formulated at the length scale of the masonry stones whose interaction is described through constitutive equations featuring softening in tension and strain hardening in compression. The numerical results relevant to diagonal compression tests show that the intrinsic stochastic character of LDPM can quantify the variation of the mechanical properties of irregular masonry resulting from random stone size and stone-size distribution. Furthermore, the paper presents an analysis of the size effect on irregular stone masonry structures. This was obtained by simulating the shear behavior of geometrically similar samples of different sizes. The simulations demonstrate that increasing structural size leads to a significant reduction of both structural strength and structural ductility. The magnitude of the predicted size effect suggests that, contrary to typical experimental results on reduced size samples, real irregular masonry structures must be considered as perfectly brittle.
File in questo prodotto:
File Dimensione Formato  
Lat Disc Part Mod Sim Irr ASCE JSE 2021.pdf

solo utenti autorizzati

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 3.16 MB
Formato Adobe PDF
3.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/167712
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 26
social impact