To adapt hydrotalcite-based sorbents (also known as layered double hydroxides—LDHs) to high-temperature CO2 sorption compatible with tar steam reforming, the addition of CaO was investigated, maintaining the LHDs porosity and accessibility but mostly assuring the CO2 sorption stability during sorption/desorption cycles. In co-precipitation synthesis, the investigated parameters are (i) various interlayer anions with different sizes and valences (carbonate, oxalate, and stearate); (ii) various pH values; (iii) different Mg/Ca molar ratios. The characterization of these modified LDHs by TGA, XRD, N2 adsorption, SEM, sorption capacity, and sorption/desorption stability (cyclic TGA) allowed understanding the effect of the various synthesis parameters and highlighted the effect of oxalate use as the interlayer anion. After calcination of sorbent with Mg/Ca/Al ratio = 1/2/1, typical LDH sand roses were formed both with carbonate and oxalate anions: this former exhibited the highest sorption capacity and accessibility of CaO sites at 600 °C, higher than pure CaO. However, the best stability during cycles was obtained with the sorbent from oxalate and Mg/Ca/Al ratio = 1.5/1.5/1 at pH 10 for which comparable sorption results are reached. For these two samples, the observed macro-porosity was associated with the highest specific surface area and pore volume. Graphic Abstract: [Figure not available: see fulltext.].
Development of a High Temperature CO2 Sorbent Based on Hydrotalcite for a H2-Rich Syngas Production
Gallucci K.
2021-01-01
Abstract
To adapt hydrotalcite-based sorbents (also known as layered double hydroxides—LDHs) to high-temperature CO2 sorption compatible with tar steam reforming, the addition of CaO was investigated, maintaining the LHDs porosity and accessibility but mostly assuring the CO2 sorption stability during sorption/desorption cycles. In co-precipitation synthesis, the investigated parameters are (i) various interlayer anions with different sizes and valences (carbonate, oxalate, and stearate); (ii) various pH values; (iii) different Mg/Ca molar ratios. The characterization of these modified LDHs by TGA, XRD, N2 adsorption, SEM, sorption capacity, and sorption/desorption stability (cyclic TGA) allowed understanding the effect of the various synthesis parameters and highlighted the effect of oxalate use as the interlayer anion. After calcination of sorbent with Mg/Ca/Al ratio = 1/2/1, typical LDH sand roses were formed both with carbonate and oxalate anions: this former exhibited the highest sorption capacity and accessibility of CaO sites at 600 °C, higher than pure CaO. However, the best stability during cycles was obtained with the sorbent from oxalate and Mg/Ca/Al ratio = 1.5/1.5/1 at pH 10 for which comparable sorption results are reached. For these two samples, the observed macro-porosity was associated with the highest specific surface area and pore volume. Graphic Abstract: [Figure not available: see fulltext.].File | Dimensione | Formato | |
---|---|---|---|
8aa76c7b-92f4-4b39-9483-b187158bc4ba.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
948.22 kB
Formato
Adobe PDF
|
948.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.