The aim of this work is to identify the effect of the CaO phase as a CO2 sorbent and mayenite (Ca12 Al14 O33) as a stabilizing phase in a bi-functional material for CO2 capture in biomass syngas conditioning and cleaning at high temperature. The effect of different CaO weight contents is studied (0, 56, 85, 100 wt%) in sorbents synthesized by the wet mixing method. These high temperature solid sorbents are upgraded to bi-functional compounds by the addition of 3 or 6 wt% of nickel chosen as the metal active phase. N2 adsorption, X-ray diffraction, scanning electronic microscopy, temperature-programmed reduction analyses and CO2 sorption study were performed to characterize structural, textural, reducibility and sorption properties of bi-functional materials. Finally, sorption-enhanced reforming of toluene (chosen as tar model), of methane then of methane and toluene with bi-functional compounds were performed to study the best material to improve H2 content in a syngas, provided by steam biomass gasification. If the catalytic activity on the sorption enhanced reforming of methane exhibits a fast fall-down after 10–15 min of experimental test, the reforming of toluene reaches a constant conversion of 99.9% by using bi-functional materials.

Bi-functional catalyst/sorbent for a h2-rich gas from biomass gasification

Micheli F.;Gallucci K.
2021

Abstract

The aim of this work is to identify the effect of the CaO phase as a CO2 sorbent and mayenite (Ca12 Al14 O33) as a stabilizing phase in a bi-functional material for CO2 capture in biomass syngas conditioning and cleaning at high temperature. The effect of different CaO weight contents is studied (0, 56, 85, 100 wt%) in sorbents synthesized by the wet mixing method. These high temperature solid sorbents are upgraded to bi-functional compounds by the addition of 3 or 6 wt% of nickel chosen as the metal active phase. N2 adsorption, X-ray diffraction, scanning electronic microscopy, temperature-programmed reduction analyses and CO2 sorption study were performed to characterize structural, textural, reducibility and sorption properties of bi-functional materials. Finally, sorption-enhanced reforming of toluene (chosen as tar model), of methane then of methane and toluene with bi-functional compounds were performed to study the best material to improve H2 content in a syngas, provided by steam biomass gasification. If the catalytic activity on the sorption enhanced reforming of methane exhibits a fast fall-down after 10–15 min of experimental test, the reforming of toluene reaches a constant conversion of 99.9% by using bi-functional materials.
File in questo prodotto:
File Dimensione Formato  
processes-09-01249-v3_minore10Mb.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 9.1 MB
Formato Adobe PDF
9.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/170705
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact