We report a detailed investigation of the field emission properties of transition metal dichalcogenides, namely MoS2 and WSe2, taking advantage of an experimental setup realized inside a scanning electron microscope equipped with nano-manipulated probe-tips, used for positioning a tip-shaped anode at a nanometric distance from the emitting surface. For n-type WSe2 monolayer on Si/SiO2 substrate, we show that electrons can be extracted also from the flat part of the flake with a current intensity up to few nanoamperes. More interestingly, we demonstrate that the field emission current can be modulated by the back-gate voltage that controls the n-type doping of the WSe2 monolayer. Similarly, we demonstrate that monolayer MoS2 flakes are suitable for gate-controlled field emission devices, opening the way to the development of new field emission transistors based on ultrathin materials.

2D transition metal dichalcogenides nanosheets as gate modulated cold electron emitters

Passacantando M.;
2021

Abstract

We report a detailed investigation of the field emission properties of transition metal dichalcogenides, namely MoS2 and WSe2, taking advantage of an experimental setup realized inside a scanning electron microscope equipped with nano-manipulated probe-tips, used for positioning a tip-shaped anode at a nanometric distance from the emitting surface. For n-type WSe2 monolayer on Si/SiO2 substrate, we show that electrons can be extracted also from the flat part of the flake with a current intensity up to few nanoamperes. More interestingly, we demonstrate that the field emission current can be modulated by the back-gate voltage that controls the n-type doping of the WSe2 monolayer. Similarly, we demonstrate that monolayer MoS2 flakes are suitable for gate-controlled field emission devices, opening the way to the development of new field emission transistors based on ultrathin materials.
File in questo prodotto:
File Dimensione Formato  
238_IEEE proceeding 2.pdf

solo utenti autorizzati

Descrizione: Articolo Principale
Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 413.46 kB
Formato Adobe PDF
413.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/171132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact