We consider the relaxed functional RF(u)=inflim infkF(uk):uk→uwhere F is the polyconvex integral F(u)=∫Ω[|Du|p+h(detDu)]dx,with u:Ω⊂Rn→Rn and h≥0 is convex. We prove bounds for minimizers of RF(u). Similar results are already known when p≥2. In the present paper we use a different technique that allows us to get also the subquadratic case 1<2. The model case is h(t)=|t|s with s≥1: with such an h, we get maximum modulus inequality supΩ|u|≤sup∂Ω|u|.

Estimates for minimizers of some relaxed polyconvex functionals

Leonetti F.
2021

Abstract

We consider the relaxed functional RF(u)=inflim infkF(uk):uk→uwhere F is the polyconvex integral F(u)=∫Ω[|Du|p+h(detDu)]dx,with u:Ω⊂Rn→Rn and h≥0 is convex. We prove bounds for minimizers of RF(u). Similar results are already known when p≥2. In the present paper we use a different technique that allows us to get also the subquadratic case 1<2. The model case is h(t)=|t|s with s≥1: with such an h, we get maximum modulus inequality supΩ|u|≤sup∂Ω|u|.
File in questo prodotto:
File Dimensione Formato  
FrancescoLucaMenita_10_Sett.pdf

solo utenti autorizzati

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 418.71 kB
Formato Adobe PDF
418.71 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/171533
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact