We aim at contributing to the reliability of the phase scintillation index on Global Navigation Satellite System (GNSS) signals at high-latitude. To the scope, we leverage on a recently introduced detrending scheme based on the signal decomposition provided by the fast iterative filtering (FIF) technique. This detrending scheme has been demonstrated to enable a fine-tuning of the cutoff frequency for phase detrending used in the phase scintillation index definition. In a single case study based on Galileo data taken by a GNSS ionospheric scintillation monitor receiver (ISMR) in Concordia Station (Antarctica), we investigate how to step ahead of the cutoff frequency optimization. We show how the FIF-based detrending allows deriving adaptive cutoff frequencies, whose value changes minute-by-minute. They are found to range between 0.4 and 1.2 Hz. This allows better accounting for diffractive effects in phase scintillation index calculation and provides a GNSS-based estimation of the relative velocity between satellite and ionospheric irregularities.

Adaptive Phase Detrending for GNSS Scintillation Detection: A Case Study Over Antarctica

Cicone A.;
2021

Abstract

We aim at contributing to the reliability of the phase scintillation index on Global Navigation Satellite System (GNSS) signals at high-latitude. To the scope, we leverage on a recently introduced detrending scheme based on the signal decomposition provided by the fast iterative filtering (FIF) technique. This detrending scheme has been demonstrated to enable a fine-tuning of the cutoff frequency for phase detrending used in the phase scintillation index definition. In a single case study based on Galileo data taken by a GNSS ionospheric scintillation monitor receiver (ISMR) in Concordia Station (Antarctica), we investigate how to step ahead of the cutoff frequency optimization. We show how the FIF-based detrending allows deriving adaptive cutoff frequencies, whose value changes minute-by-minute. They are found to range between 0.4 and 1.2 Hz. This allows better accounting for diffractive effects in phase scintillation index calculation and provides a GNSS-based estimation of the relative velocity between satellite and ionospheric irregularities.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/172935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 4
social impact