The adhesion of osteoclasts to the bone matrix is mandatory for bone resorption. Contact of the osteoclast with bone surface induces, in fact, cell polarization and organization of the resorbing apparatus, the so-called "ruffled border." Cell-matrix interaction in osteoclasts is a complex phenomenon resulting from formation of the "clear zone," a cytoplasmic area presenting the adhering plasma membrane, or "sealing membrane." The sealing membrane surrounds the ruffled border and seals the resorbing compartment, namely the extracellular space in which bone resorption takes place. Adhesion at this level occurs via specialized discrete structures, the "podosomes." Podosomes present most of the protein commonly found in focal adhesions, but with a peculiar organization. They are dynamic elements suitable for regulation, according with the functional demand of the cell. Their assembly increases during bone resorption and is regulated by the cytosolic free calcium concentration and the activity of protein kinase C.

CLEAR ZONE IN OSTEOCLAST FUNCTION - ROLE OF PODOSOMES IN REGULATION OF BONE-RESORBING ACTIVITY

TETI, ANNA MARIA;
1991-01-01

Abstract

The adhesion of osteoclasts to the bone matrix is mandatory for bone resorption. Contact of the osteoclast with bone surface induces, in fact, cell polarization and organization of the resorbing apparatus, the so-called "ruffled border." Cell-matrix interaction in osteoclasts is a complex phenomenon resulting from formation of the "clear zone," a cytoplasmic area presenting the adhering plasma membrane, or "sealing membrane." The sealing membrane surrounds the ruffled border and seals the resorbing compartment, namely the extracellular space in which bone resorption takes place. Adhesion at this level occurs via specialized discrete structures, the "podosomes." Podosomes present most of the protein commonly found in focal adhesions, but with a peculiar organization. They are dynamic elements suitable for regulation, according with the functional demand of the cell. Their assembly increases during bone resorption and is regulated by the cytosolic free calcium concentration and the activity of protein kinase C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/17439
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 132
  • ???jsp.display-item.citation.isi??? 130
social impact