A hierarchical stochastic macromodeling approach is proposed for the efficient variability analysis of complex nonlinear electronic systems. A combination of the Transfer Function Trajectory and Polynomial Chaos methods is used to generate stochastic macromodels. In order to reduce the computational complexity of the model generation when the number of stochastic variables increases, a hierarchical system decomposition is used. Pertinent numerical results validate the proposed methodology.

Stochastic macromodeling for hierarchical uncertainty quantification of nonlinear electronic systems

Antonini G.
2015

Abstract

A hierarchical stochastic macromodeling approach is proposed for the efficient variability analysis of complex nonlinear electronic systems. A combination of the Transfer Function Trajectory and Polynomial Chaos methods is used to generate stochastic macromodels. In order to reduce the computational complexity of the model generation when the number of stochastic variables increases, a hierarchical system decomposition is used. Pertinent numerical results validate the proposed methodology.
978-1-4799-6616-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/175672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact