We develop a combinatorial version of harmonic analysis on configuration spaces over Riemannian manifolds. Our constructions are based on the use of a lifting operator which can be considered as a kind of (combinatorial) Fourier transform in the configuration space analysis. The latter operator gives us a natural lifting of the geometry from the underlying manifold onto the configuration space. Properties of correlation measures for given states (i.e. probability measures) on configuration spaces are studied including a characterization theorem for correlation measures.

Harmonic analysis on configuration space I. General theory

Kuna T.
2002

Abstract

We develop a combinatorial version of harmonic analysis on configuration spaces over Riemannian manifolds. Our constructions are based on the use of a lifting operator which can be considered as a kind of (combinatorial) Fourier transform in the configuration space analysis. The latter operator gives us a natural lifting of the geometry from the underlying manifold onto the configuration space. Properties of correlation measures for given states (i.e. probability measures) on configuration spaces are studied including a characterization theorem for correlation measures.
File in questo prodotto:
File Dimensione Formato  
Kondratiev_Kuna_Harmonic_Analysis_on_configuration_space_I_General_Theory.pdf

non disponibili

Descrizione: PDF
Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 625.45 kB
Formato Adobe PDF
625.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/175989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? ND
social impact