Let X be a locally compact Polish space. A random measure on X is a probability measure on the space of all (nonnegative) Radon measures on X. Denote by K(X) the cone of all Radon measures η on X which are of the form η=∑isiδxi, where, for each i, si>0 and δ xi is the Dirac measure at xiεX. A random discrete measure on X is a probability measure on K(X). The main result of the paper states a necessary and sufficient condition (conditional upon a mild a priori bound) when a random measure μ is also a random discrete measure. This condition is formulated solely in terms of moments of the random measure μ. Classical examples of random discrete measures are completely random measures and additive subordinators, however, the main result holds independently of any independence property. As a corollary, a characterization via moments is given when a random measure is a point process.
A moment problem for random discrete measures
Kuna T.;
2015-01-01
Abstract
Let X be a locally compact Polish space. A random measure on X is a probability measure on the space of all (nonnegative) Radon measures on X. Denote by K(X) the cone of all Radon measures η on X which are of the form η=∑isiδxi, where, for each i, si>0 and δ xi is the Dirac measure at xiεX. A random discrete measure on X is a probability measure on K(X). The main result of the paper states a necessary and sufficient condition (conditional upon a mild a priori bound) when a random measure μ is also a random discrete measure. This condition is formulated solely in terms of moments of the random measure μ. Classical examples of random discrete measures are completely random measures and additive subordinators, however, the main result holds independently of any independence property. As a corollary, a characterization via moments is given when a random measure is a point process.File | Dimensione | Formato | |
---|---|---|---|
1310.7872.pdf
non disponibili
Descrizione: PDF
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
490.63 kB
Formato
Adobe PDF
|
490.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.