We consider a particular instance of the truncated realizability problem on the d-dimensional lattice. Namely, given two functions ρ1(i) and ρ2(i; j) non-negative and symmetric on ℤd, we ask whether they are the first two correlation functions of a translation invariant point process. We provide an explicit construction of such a realizing process for any d ≥ 2 when the radial distribution has a specific form. We also derive from this construction a lower bound for the maximal realizable density and compare it with the already known lower bounds.
Translation invariant realizability problem on the d-dimensional lattice: An explicit construction
Kuna T.
2016-01-01
Abstract
We consider a particular instance of the truncated realizability problem on the d-dimensional lattice. Namely, given two functions ρ1(i) and ρ2(i; j) non-negative and symmetric on ℤd, we ask whether they are the first two correlation functions of a translation invariant point process. We provide an explicit construction of such a realizing process for any d ≥ 2 when the radial distribution has a specific form. We also derive from this construction a lower bound for the maximal realizable density and compare it with the already known lower bounds.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1510.02954.pdf
accesso aperto
Descrizione: PDF
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
344.63 kB
Formato
Adobe PDF
|
344.63 kB | Adobe PDF | Visualizza/Apri |
16-ECP4620.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
394.24 kB
Formato
Adobe PDF
|
394.24 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.