We consider a particular instance of the truncated realizability problem on the d-dimensional lattice. Namely, given two functions ρ1(i) and ρ2(i; j) non-negative and symmetric on ℤd, we ask whether they are the first two correlation functions of a translation invariant point process. We provide an explicit construction of such a realizing process for any d ≥ 2 when the radial distribution has a specific form. We also derive from this construction a lower bound for the maximal realizable density and compare it with the already known lower bounds.

Translation invariant realizability problem on the d-dimensional lattice: An explicit construction

Kuna T.
2016-01-01

Abstract

We consider a particular instance of the truncated realizability problem on the d-dimensional lattice. Namely, given two functions ρ1(i) and ρ2(i; j) non-negative and symmetric on ℤd, we ask whether they are the first two correlation functions of a translation invariant point process. We provide an explicit construction of such a realizing process for any d ≥ 2 when the radial distribution has a specific form. We also derive from this construction a lower bound for the maximal realizable density and compare it with the already known lower bounds.
File in questo prodotto:
File Dimensione Formato  
1510.02954.pdf

accesso aperto

Descrizione: PDF
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 344.63 kB
Formato Adobe PDF
344.63 kB Adobe PDF Visualizza/Apri
16-ECP4620.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 394.24 kB
Formato Adobe PDF
394.24 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/175992
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact