We address the problem of computing the distribution of induced connected subgraphs, aka graphlets or motifs, in large graphs. The current state-of-the-art algorithms estimate the motif counts via uniform sampling by leveraging the color coding technique by Alon, Yuster, and Zwick. In this work, we extend the applicability of this approach by introducing a set of algorithmic optimizations and techniques that reduce the running time and space usage of color coding and improve the accuracy of the counts. To this end, we first show how to optimize color coding to efficiently build a compact table of a representative subsample of all graphlets in the input graph. For 8-node motifs, we can build such a table in one hour for a graph with 65M nodes and 1.8B edges, which is 2,000 times larger than the state of the art. We then introduce a novel adaptive sampling scheme that breaks the “additive error barrier” of uniform sampling, guaranteeing multiplicative approximations instead of just additive ones. This allows us to count not only the most frequent motifs, but also extremely rare ones. For instance, on one graph we accurately count nearly 10.000 distinct 8-node motifs whose relative frequency is so small that uniform sampling would literally take centuries to find them. Our results show that color coding is still the most promising approach to scalable motif counting.

Faster motif counting via succinct color coding and adaptive sampling

Leucci S.
;
2021-01-01

Abstract

We address the problem of computing the distribution of induced connected subgraphs, aka graphlets or motifs, in large graphs. The current state-of-the-art algorithms estimate the motif counts via uniform sampling by leveraging the color coding technique by Alon, Yuster, and Zwick. In this work, we extend the applicability of this approach by introducing a set of algorithmic optimizations and techniques that reduce the running time and space usage of color coding and improve the accuracy of the counts. To this end, we first show how to optimize color coding to efficiently build a compact table of a representative subsample of all graphlets in the input graph. For 8-node motifs, we can build such a table in one hour for a graph with 65M nodes and 1.8B edges, which is 2,000 times larger than the state of the art. We then introduce a novel adaptive sampling scheme that breaks the “additive error barrier” of uniform sampling, guaranteeing multiplicative approximations instead of just additive ones. This allows us to count not only the most frequent motifs, but also extremely rare ones. For instance, on one graph we accurately count nearly 10.000 distinct 8-node motifs whose relative frequency is so small that uniform sampling would literally take centuries to find them. Our results show that color coding is still the most promising approach to scalable motif counting.
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11697/176449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact