In this letter we present a finite temperature approach to a high-dimensional inference problem, the Wigner spiked model, with group dependent signal-to-noise ratios. For two classes of convex and non-convex network architectures the error in the reconstruction is described in terms of the solution of a mean-field spin-glass on the Nishimori line. In the cases studied the order parameters do not fluctuate and are the solution of finite dimensional variational problems. The deep architecture is optimized in order to confine the high temperature phase where reconstruction fails.

A statistical physics approach to a multi-channel Wigner spiked model

Alberici, Diego;
2022

Abstract

In this letter we present a finite temperature approach to a high-dimensional inference problem, the Wigner spiked model, with group dependent signal-to-noise ratios. For two classes of convex and non-convex network architectures the error in the reconstruction is described in terms of the solution of a mean-field spin-glass on the Nishimori line. In the cases studied the order parameters do not fluctuate and are the solution of finite dimensional variational problems. The deep architecture is optimized in order to confine the high temperature phase where reconstruction fails.
File in questo prodotto:
File Dimensione Formato  
16prov.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/176490
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact