This work introduces an innovative, sustainable, and scalable synthesis of iron oxides nanoparticles (NPs) in aqueous suspension. The method, based on ion exchange process, consists of a one-step procedure, time and energy saving, operating in water and at room temperature, by cheap and renewable reagents. The influence of both oxidation state of the initial reagent and reaction atmosphere is considered. Three kinds of iron nanostructured compounds are obtained (2-lines ferrihydrite; layered-structure iron oxyhydroxide δ-FeOOH; and cubic magnetite), in turn used as precursors to obtain hematite and maghemite NPs. All the produced NPs are characterized by a high purity, small particles dimensions (from 2 to 50 nm), and high specific surface area values up to 420 m2/g, with yields of production >90%. In particular, among the most common iron oxide NPs, we obtained cubic magnetite NPs at room temperature, characterized by particle dimensions of about 6 nm and a surface area of 170 m2/g. We also obtained hematite NPs at very low temperature conditions (that is 2 h at 200 °C), characterized by particles dimensions of about 5 nm with a surface area value of 200 m2/g. The obtained results underline the strength of the synthetic method to provide a new, sustainable, tunable, and scalable high-quality production.

New sustainable, scalable and one-step synthesis of iron oxide nanoparticles by ion exchange process

Macera L.;Daniele V.
;
Taglieri G.
2021

Abstract

This work introduces an innovative, sustainable, and scalable synthesis of iron oxides nanoparticles (NPs) in aqueous suspension. The method, based on ion exchange process, consists of a one-step procedure, time and energy saving, operating in water and at room temperature, by cheap and renewable reagents. The influence of both oxidation state of the initial reagent and reaction atmosphere is considered. Three kinds of iron nanostructured compounds are obtained (2-lines ferrihydrite; layered-structure iron oxyhydroxide δ-FeOOH; and cubic magnetite), in turn used as precursors to obtain hematite and maghemite NPs. All the produced NPs are characterized by a high purity, small particles dimensions (from 2 to 50 nm), and high specific surface area values up to 420 m2/g, with yields of production >90%. In particular, among the most common iron oxide NPs, we obtained cubic magnetite NPs at room temperature, characterized by particle dimensions of about 6 nm and a surface area of 170 m2/g. We also obtained hematite NPs at very low temperature conditions (that is 2 h at 200 °C), characterized by particles dimensions of about 5 nm with a surface area value of 200 m2/g. The obtained results underline the strength of the synthetic method to provide a new, sustainable, tunable, and scalable high-quality production.
File in questo prodotto:
File Dimensione Formato  
NANOMATERIALS_2021.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 1.77 MB
Formato Adobe PDF
1.77 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/176684
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact