An existence result for a generalized inequality over a possible unbounded domain in a finite-dimensional space is established. The proof technique allows to avoid any monotonicity assumption. We adapt a weak coercivity condition introduced in Castellani and Giuli (J Glob Optim 75:163–176, 2019) for a generalized game which extends an older one proposed by Konnov and Dyabilkin (J Glob Optim 49:575–577, 2011) for equilibrium problems. Our main result encompasses and generalizes several existence results for equilibrium, quasiequilibrium and fixed-point problems.
A Generalized Ky Fan Minimax Inequality on Finite-Dimensional Spaces
Castellani M.;Giuli M.
2021-01-01
Abstract
An existence result for a generalized inequality over a possible unbounded domain in a finite-dimensional space is established. The proof technique allows to avoid any monotonicity assumption. We adapt a weak coercivity condition introduced in Castellani and Giuli (J Glob Optim 75:163–176, 2019) for a generalized game which extends an older one proposed by Konnov and Dyabilkin (J Glob Optim 49:575–577, 2011) for equilibrium problems. Our main result encompasses and generalizes several existence results for equilibrium, quasiequilibrium and fixed-point problems.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s10957-021-01903-1.pdf
accesso aperto
Tipologia:
Documento in Versione Editoriale
Licenza:
Creative commons
Dimensione
313.75 kB
Formato
Adobe PDF
|
313.75 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.