An existence result for a generalized inequality over a possible unbounded domain in a finite-dimensional space is established. The proof technique allows to avoid any monotonicity assumption. We adapt a weak coercivity condition introduced in Castellani and Giuli (J Glob Optim 75:163–176, 2019) for a generalized game which extends an older one proposed by Konnov and Dyabilkin (J Glob Optim 49:575–577, 2011) for equilibrium problems. Our main result encompasses and generalizes several existence results for equilibrium, quasiequilibrium and fixed-point problems.

A Generalized Ky Fan Minimax Inequality on Finite-Dimensional Spaces

Castellani M.;Giuli M.
2021

Abstract

An existence result for a generalized inequality over a possible unbounded domain in a finite-dimensional space is established. The proof technique allows to avoid any monotonicity assumption. We adapt a weak coercivity condition introduced in Castellani and Giuli (J Glob Optim 75:163–176, 2019) for a generalized game which extends an older one proposed by Konnov and Dyabilkin (J Glob Optim 49:575–577, 2011) for equilibrium problems. Our main result encompasses and generalizes several existence results for equilibrium, quasiequilibrium and fixed-point problems.
File in questo prodotto:
File Dimensione Formato  
jota190 343-357.pdf

accesso aperto

Tipologia: Documento in Versione Editoriale
Licenza: Creative commons
Dimensione 313.75 kB
Formato Adobe PDF
313.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11697/176686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact